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Viscous Drag by Cellular Automata 
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A simple method to compute the drag coefficient of two-dimensional bodies 
with arbitrary shapes is presented. The procedure is based on cellular automata 
as an extreme idealization of the molecular dynamics of a viscous fluid. We 
verify the algorithm by examples and obtain results in quantitative agreement 
with experiments even when eddies behind the obstacle are formed. 
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1. I N T R O D U C T I O N  

Lattice gas models have been the object of intense study since their 
definitive formulat ion by Frisch et  al. ~1) They showed that  these discrete 
Boolean models with suitable rules of evolution imposed by conservat ion 
laws for the mass, momentum,  and energy have associated dynamical  laws 
which approximate  the Navier -S tokes  equations. In two dimensions this is 
achieved on the tr iangular lattice owing to the isotropy of the fourth-order  
tensors arising in the limiting process (see the C h a p m a n  Enskog 
expansion(2~). Simulation of two-dimensional  hydrodynamics  by cellular 
au tomata  (CA) is therefore so easy (3 6) that  is takes no more  than 20 For-  
t ran statements ~7) to p rogram the salient steps. 

When  one compares  this method  with the application of  finite 
elements (s) or  spectral methods,  (9) one must  admit  that  cellular au toma ta  
are inferior when accuracy within short  computa t ional  time is required. 
However,  the numerical  stability of the CAs is unsurpassed. Also matchless 
is the ease with which even very complicated boundaries  can be taken into 
account.  These two properties make CAs a convenient  tool for the corn- 
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putation of drag coefficients. This is a standard problem in hydrodynamics, 
which has been solved for many simple obstacles. Of interest, therefore, are 
complicated shapes. It is hard to build a complicated shape into a spectral 
code; it is easier with finite elements, but here general experience is that 
finite-element programs become unstable if a too involved geometry is set 
up. 

The drag coefficient can be defined as 

co := F/�89 (1) 

So if the body is inserted into homogeneous flow with density p and 
velocity U0, it exposes its cross-sectional area A to the stream. F is the 
force of resistance. Theoretically one may find it from the stress tensor, 
which contains the pressure and certain derivatives of the modified velocity 
field v(x, y, t). The pressure, in turn, is also obtained from the velocity 
field, namely via the Navier-Stokes equation. This, however, involves even 
double differentiations. CAs provide us with that velocity field, but with an 
accuracy so low that even single differentiations are problematic. 

Naturally, we have a solution for this problem (Section2). In 
Section 3 we describe our experience with this algorithm. We apply it then 
to the circular cylinder, to verify that decent numerical values come out, and 
treat another, more exotic case (Section 4). Due to restriction of computer 
memory, we had to exclude from our study turbulent flows, but we did 
computations in a range where long eddies are produced. We compare the 
computed eddies with those from experiments and find satisfactory agree- 
ment. This might be interesting because with the eddies the nonlinearity of 
the Navier-Stokes equation comes into play: We offer a quantitative 
confirmation of the CA method in the nonlinear regime (Section 5). 

2. T H E  A L G O R I T H M  

For the computation of the drag which acts on a body, it is useful to 
remember that CAs are nothing but idealized molecular systems bound to 
respect the elementary laws of conservation. And this, in particular the 
momentum balance, is all we need to find the resistance. Namely, F in (1) 
is just the force which the molecules exert on the body. From Newton we 
know 

Ap 
- f  (2) 

At 

i.e., the momentum transfer zlp gives the force f which the body experiences 
from a single collision. We have only to look for all collisions of CA par- 



Viscous Drag by Cel lu lar  A u t o m a t a  503 

ticles with the obstacle and to collect their velocity changes. This produces 
the desired F of (1), without any differentiation. Altogether we find 

2 Zi  Avl .I (3) 
CD = UgpL(At/m) 

where summation has to go over all particles which hit the body at a given 
instant t. The vl t are the velocity components of these particles parallel to 
the basic flow. Furthermore, we have pL as a substitute of pA in Eq. (1) 
as we are concerned with a 2D problem, so that cD on the left-hand side 
of (3) denotes the drag coefficient per length unit. At and m are the time 
step and mass, respectively, both of which we choose to be unity. 

Units must be handled with care. We use the distance between nearest 
neighbors in the triangular lattice as the length unit and one sweep through 
the lattice as the time unit. Furthermore, we embed a Cartesian coordinate 
system so that the bases of the triangles are parallel to the x axis. Lengths 
in the x direction are therefore given directly by the number of grid points 
lx. But for lengths in the y direction, the points ly must be multiplied by 
cos 60 o = x/3/2. Fortunately, pL in (3) is an invariant under such transfor- 
mations, pL is simply equal to the number of grid points across the span, 
since we have, in the average, one particle per node. On the contrary, the 
factor ,,/~/2 plays a role in the formula for the Reynolds number 

UoL/2 
Re - - -  (4) 

v 

The main example for such calculations is the cylinder. Therefore it is 
customary to compute Re with the radius of the body rather than with its 
total span L. We put the x axis parallel to the basic flow. Hence the span 
must be taken in the y direction. As we work with the collision rules of 
ref. 7, the effective viscosity v is about 0.55. The velocity Uo was chosen to 
be 0.21. This keeps unrealistic compressibility effects comfortably below the 
dangerous limit. ~1o) 

To create a suitable environment for "measurements" of the drag, we 
set up a "square" lattice lx = ly and force non-slip boundary conditions at 
Ymin = 0 and Ymax = ly ,,f3/2 by inversion of velocities. (3) For these bound- 
ary conditions special collision tables are needed, which, however, are 
easily constructed by the rules given in ref. 7. In this oblique "channel" we 
install Poiseuille flow 

4Uo 
v(x, y, t=O)= .--T-- y(ymax-- y )e  ~ (5) 

Ymax 

by suitable Monte Carlo sampling of the initial velocities, ex is a unit 
vector. Flux conservation is guaranteed by periodicity. 
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Hence we have lx Poiseuille profiles on the stack. We retain 200 of 
them. When the flow goes on, we insert these profiles at Xmin=0 and 
Xmax = lx, selecting randomly one of the 200 profiles after each sweep, to 
maintain boundary conditions at the open ends. If one would stick to one 
profile, its fluctuations would propagate into the interior and distort the 
flow. 

The obstacle is defined by two fields, Y F R O N T  and YBACK, to 
describe the shape in the xy  plane. Shapes with numerous bulges require 
several YFRONT s  and YBACKs, but there is no problem in such an 
extension. Along these fields inversion of velocities is applied, just the same 
as used for upper and lower borders. What  is now important  is that one 
can work over Y F R O N T  and YBACK a posteriori,  that is, one sweeps 
through the grid as if there were no obstacle. After each sweep one replaces 
the velocities on the surface of the body. This avoids many IFs and there- 
fore keeps a vector computer  going. 

A copy of the Fortran program is available from the authors. The 
main loops are published. (7) 

3. I N S E R T I O N ,  R E L A X A T I O N ,  A N D  ALL T H A T  

Immediately after initialization we insert the body. The sudden inser- 
tion causes, of course, unphysical shocks, which, however, relax so that 
after some time the steady flow about  the body emerges. Figure 1 illustrates 
such a relaxation. We see that after about 3000 time steps the giant fluctua- 
tions disappear, and just the normal ones, belonging to the stationary 
regime, remain. From our experience with lattices of different sizes lx x ly 
we derived 

/relax ~ lxly/lO00 (6) 

as a rule of thumb. This expands computational  times very much as soon 
as flows with somewhat higher Reynolds numbers are simulated. For exam- 
ple, our biggest grid was 2800 x 2800, permitting us computations at 
Re ~ 100. In this case it took about  3 hr of CPU time on a single processor 
of a Cray-YMP to find a drag coefficient. This again underlines the 
necessity to construct CAs with viscosities as small as possible. (~1) 

But even the equilibrium fluctuations are not small. Those shown-in 
Fig. 1 are already averages over 50 time steps. To obtain good values for 
the drag coefficient CD, we extend the computation until 2tre~ax and average 
over all equilibrium steps. 

Normally drag coefficients are given for homogeneous basic flow. We, 
in contrast, work with a Poiseuille stream as basic flow. However, all our 
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Fig. 1. The drag coefficient c e of the hexagon as a function of time t. The computation was 
done on a 1600 x 1600 grid and the hexagon had a span of 280 grid points in the y direction. 
This corresponds, in accordance with (4), to the Reynolds number given in the figure. Also 
indicated is the long-time average of c D used for Fig. 2. The fluctuations of c D for the times 
0 < t < 700 not shown here are so big that they would dwarf everything else. 

obstacles have a span that occupies less than 20% of the total channel 
width. Since we put the bodies on the centerline of the channel, we know 
that due to the parabolic profile (5) errors should be just a few percent. 
This is acceptable because the total accuracy of our method is not better 
than 10%. What  is of concern is the x direction; the bodies are placed into 
the first third of the channel to make the wake visible. 

4. DRAG AS A FUNCTION OF REYNOLDS N U M B E R  

We have applied the procedures described in the previous two sections 
to the cylinder and a hexagon. For  the cylinder an analytic solution is 
known (12) 

8~ 1 
(7) 

CD -- Re 1 -- 2 log(7 Re/4) 

with 7 = 1.781072 .... Equation (7) holds only for very small Reynolds num- 
bers, Re < 1. Nevertheless, it is useful if one wants to check the viscosity of 
a CA. Wieselsberger's measurements of the drag coefficient extend to 
Re = 106. (13/ Part of them are shown in Fig. 2 by the solid line. Our com- 
puted values, shown by the solid circles, agree within 10%. In addition, we 
have computed drag coefficients for the body displayed in Fig. 3. The 
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Stationary values of the drag coefficient c D as a function of Reynolds number  Re. 

results, indicated in Fig. 2 by the stars, exhibit the same general trend as 
those for the cylinder. However, they are systematically smaller at the 
smaller Reynolds numbers, probably due to the sharp rear edge. 

5. F O R M A T I O N  OF EDDIES BEHIND A BODY 

Equation (7) becomes hopelessly wrong as soon as the slightest wake 
is formed. Our method, however, performs well even if long eddies are 

f / ' / J / _ j -  _ 
/ / / / /  " _--__-__.-__ -... - . . . . . . . .  

J / '  . . . . .  

/ - -  - - . \  

" - . . \ \ \ -  

Fig. 3. Stationary flow past the hexagon at Re = 23.1. The straight centerline was drawn only 
for orientation. Inside the area distinguished by the dotted line, the velocity vectors were 
magnified by the factor 5. This is because in the region of recirculation velocities generally are 
quite slow. The turning point is marked by the blob. One may note that the velocities on the 
centerline before and behind that blob have opposite x directions. Thus, one can measure the 
length of the eddies and check if the value given in Fig. 4 is right. This picture was obtained 
by superposition of stationary velocity fields on eight different lattices Iv) at eight different 
times. 
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Fig. 4.. Dimensionless length of eddies behind the hexagon as a function of Reynolds number 

Re. The drawn lines are just to guide the eye. 

generated. An example is shown in Fig. 3. The turning point, where the 
back flow ends, can be remarkably  well identified. One even recognizes 
the structure of the eddies, even though  this is at the limits of accuracy of 
the present method.  

The computed  positions of the turning points can be compared  with 
experimental values (see Fig. 4). One  measures the distance between the 
rear edge of the body  and the turning point  and divides it by the span of 
the obstacle. Of  course, experimentally only values for the cylinder are 
avail[able. (~4) We spent most  of our  computa t ional  time for the hexagon, 
considering it as the more  exotic object. Nevertheless, the agreement is as 
good as can be expected. 
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